Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.more » « less
- 
            Abstract Common practices for invasive species control and management include physical, chemical, and biological approaches. The first two approaches have clear limitations and may lead to unintended (negative) consequences, unless carefully planned and implemented. For example, physical removal rarely completely eradicates the targeted invasive species and can cause disturbances that facilitate new invasions by nonnative species from nearby habitats. Chemical treatments can harm native, and especially rare, species through unanticipated side effects. Biological methods may be classified as biocontrol and the ecological approach. Similar to physical and chemical methods, biocontrol also has limitations and sometimes leads to unintended consequences. Therefore, a relatively safer and more practical choice may be the ecological approach, which has two major components: (1) restoration of native species and (2) biomass manipulation of the restored community, such as selective grazing or prescribed burning (to achieve and maintain viable population sizes). Restoration requires well-planned and implemented planting designs that consider alpha-, beta-, and gamma-diversity and the abundance of native and invasive component species at local, landscape, and regional levels. Given the extensive destruction or degradation of natural habitats around the world, restoration could be most effective for enhancing ecosystem resilience and resistance to biotic invasions. At the same time, ecosystems in human-dominated landscapes, especially those newly restored, require close monitoring and careful intervention (e.g., through biomass manipulation), especially when successional trajectories are not moving as intended. Biomass management frequently uses prescribed burning, grazing, harvesting, and thinning to maintain overall ecosystem health and sustainability. Thus, the resulting optimal, balanced, and relatively stable ecological conditions could more effectively limit the spread and establishment of invasive species. Here we review the literature (especially within the last decade) on ecological approaches that involve biodiversity, biomass, and productivity, three key community/ecosystem variables that reciprocally influence one another. We focus on the common and most feasible ecological practices that can aid in resisting new invasions and/or suppressing the dominance of existing invasive species. We contend that, because of the strong influences from neighboring areas (i.e., as exotic species pools), local restoration and management efforts in the future need to consider the regional context and projected climate changes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
